
Homework for the summer school of Amplitudes 2021

Yang Zhang

(Dated: July 25, 2021)

Please hand in your solution to me personally, or send the electronic version to wuzihao@mail.

ustc.edu.cn.

I. UT INTEGRAL, SYMBOLS AND POLYLOGARITHMS

Problem I.1. (Massless double box DE integration). In this exercise, we finish the computation

of the massless four-point double box integrals. Use the notation in the lectures.

1. Find the analytic boundary values of the UT integrals at x = 1 up to weight 4. (Hint)

Numerically, by pySecdec, the UT integral I1 at x = 1 has the expansion

ε4I1|x=1 = 2.25000− 19.3280ε2 − 55.6127ε3 − 62.5477ε4 +O
(
ε5
)

(1)

Check your analytic expression with this.

2. Analytically solve the canonical DE with the boundary values, up to weight 4. (Hint) Nu-

merically, by pySecdec, the UT integral I1 at x = −3− iδ, δ > 0, has the expansion,

ε4I1|x=−3−iδ = 2.25000− (2.19723 − 6.28319i)ε− 19.328ε2 − (9.45502 + 30.7348i)ε3

+(50.4616 − 26.8575i)ε4 +O
(
ε5
)

(2)

Check your analytic expression with this. Note that this is a physical point, and the error of

pySecdec may be large.

3. For your analytic solution up to weight 4, compute the symbol of the solution.

4. Without the analytic solution, directly integrate the canonical DE to a symbol solution. Com-

pare your result with the answer to the previous question.

Problem I.2. (One-loop box with internal mass)

1. Given the alphabet {W1, . . . ,W8} defined in the lecture, derive the canonical differential equa-

tion with numerical intepolation.
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2. Prove that the symbol

S[
βu − 1

βu + 1
,
βuv − βu
βuv + βu

] + S[
βv − 1

βv + 1
,
βuv − βv
βuv + βv

] (3)

with βu =
√

1 + u, βv =
√

1 + v and βuv =
√

1 + u+ v, is integrable. Prove that each

individual term is not integrable.

Problem I.3. (Heavy quark effective theory) Consider the two-loop integral family with,

D1 = 2l2 · v1 − 1, D2 = 2l2 · v2 − 1, D3 = (l1 − l2)2,

D4 = 2l1 · v1 − 1, D5 = 2l1 · v2 − 1, D6 = l21, D7 = l22 (4)

with l1, l2 the loop momenta, and v1, v2 the external momenta for heavy quark velocity:

v21 = v22 = 1, v1 · v2 ≡
1

2

(
x+

1

x

)
(5)

Note that as HQET, there are linear propagators here.

1. Find the master integrals of the sector (1, 1, 1, 1, 1, 1, 0) and its subsectors. Derive the differ-

ential equation for the these integrals.

2. Use the package Libra or epsilon to transform the differential equation to canonical dif-

ferential equation.

3. Does the previous transformation find a UT basis? If not, please fix it to get a UT basis. Hint:

you may explicitly compute the lowerest master integral or consider the leading singularity

of the integral G[1, 1, 1, 1, 1, 1, 0].

4. find the boundary values of the UT basis at x = 1. Hint: if the UT basis you found in the

previous question contains a factor,

1

x− 1
(6)

in the definition, then you need to compute an asymptotic expansion of the master integrals

at x→ 1. Alternatively, you may find a better UT basis without the factor 1/(x− 1).

5. With the boundary value at x = 1, analytically compute the UT basis up to the weight-4

order. Hint: at x = 1/2, from pySecdec we have,

e2εγG[1, 1, 1, 1, 1, 1, 0]|x=1/2 = (0.106767)ε−2 − (0.202461)ε−1 + 2.00144 +O(ε) (7)

Check your analytic expression against the numeric result.
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Problem I.4. (One-loop three-mass box). Consider the one-loop family with the inversed propa-

gators,

D1 = `21, D2 = (`1 − p1)2, D3 = (`1 − p1 − p2)2, D4 = (`+ p4)
2 (8)

with

p21 = m2
1, p22 = m2

2, p23 = m2
3, p24 = 0, (p1 + p2)

2 = s, (p2 + p3)
2 = t (9)

1. Find the master integrals of this family.

2. Find the UT basis of this family. You are going to get square roots. Enjoy.

3. Find the canonical DE and decompose it to get the symbol letters.

4. On the symbol level, integrate the canonical DE to the weight 3.

Problem I.5. (One-loop pentagon). Consider the one-loop family with the inversed propagators,

D1 = `21, D2 = (`1 − p1)2, D3 = (`1 − p1 − p2)2, D4 = (`− p1 − p2 − p3)2, D5 = (`+ p5)
2

(10)

with

p2i = 0, i = 1, . . . , 5, pi · pj =
sij
2

(11)

Choose s12, s23, s34, s45, s15 as kinematic variables.

1. Find the master integrals of this family.

2. Find the UT basis of this family. You are going to get one square root which is ε1234.

3. Find the canonical DE and decompose it to get the symbol letters.

4. On the symbol level, integrate the canonical DE to the weight 3.

II. COMPUTATIONAL ALGEBRAIC GEOMETRY

Problem II.1. (Impression of algebraic varieties)

1. (Heart curve) Consider the parametric curve in the x-y plane,

(x, y) =
(
16 sin3(t), 13 cos(t)− 5 cos(2t)− 2 cos(3t)− cos(4t)

)
(12)

The plot is given in Fig. 1. Prove this curve is algebraic and find a polynomial F (x, y) such

that F (x, y) = 0 defines this curve.
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FIG. 1: Heart

2. (Group Law of the elliptic curve). Consider the Weierstrass elliptic curve E,

E : y2 = x3 + ax+ b (13)

with ∆ = −16(4a3 + 27b2) 6= 0.

a) Consider two generic points P = (xP , yP ) and Q = (xQ, yQ) on this curve and P 6= Q.

The straight line connecting P and Q, intersects E at the point R. Write R’s coordinates as

rational functions of P , Q’s coordinates.

Then we formally define

P +Q+R = O (14)

while O denotes the point of infinity.

b) Similary, for a genric point P = (xP , yP ) on the curve. Let l be a straight line tangent to

E at P . l intersects E at R. Write R’s coordinates as rational functions of P .

In this case, we formally define

P + P +R = O, or 2P +R = O (15)

where O is the point of infinity. We also define −P as the point (xP ,−yP ). Treat O as the

zero element for “+”, and thus the curve E forms an Abelian group. The group structure is

crucial for the study of elliptic curve.
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c) Explicitly, let E be the elliptic curve y2 = x3 + 17. Check that the points P1 = (−2, 3) and

P2 = (2, 5) are on the curve. With the group law, expliclity compute

2P1, P1 + P2 . (16)

Define P3 = (52, 375). Find two integers n1 and n2, such that

n1P1 + n2P2 = P3 (17)

This exercise is related to the famous theorem of Mordell-Weil.

3. (Veronese and Segre Map) A Veronese map from P2 → P5 is,

φV : (x0, x1, x2) 7→ (x20, x0x1, x0x2, x
2
1, x1x2, x

2
2) (18)

The image of this map, which is a projective variety (Veronse variety), is denoted as V1.

Name the coordinates of P5 as [z0, . . . , z5] and it coordinate ring as R = [z0, . . . , z5]. Compute

the ideal I(V1).

A Segre map from P2 × P1 → P5 is,

φS : (w0, w1, w2, y0, y1) 7→ (w0y0, w0y1, w1y0, w1y1, w2y0, w2y1) (19)

The image of this map, is also a projective variety V2 (Segre variety). Compute the ideal

I(V2).

What is V1 ∩ V2? Hint: consider the primary decomposition.

Problem II.2. (Some trivial facts)

1. Consider a polynomial ring R = Q[x1, . . . xn]. I and J are ideals of R and I+J = R. Prove

that IJ = I ∩ J .

2. Prove that Cn − {0} is not an affine variety.

3. Let R = Q[x1, . . . xn] and I is a prime ideal of R. Suppose that R/I is a finite-dimensional

linear space over Q. Prove that R/I is a field.

Problem II.3. (Zero-dimensional ideal) Consider the Baxter QQ relation for the XXZ model with

twisted boundary condition. The equation, after the simplification, reads

{−5s2 − 12,−512s20 − 16800s1s0 + 29008s0 + 42875s21 − 202125s1 + 227500,

−42875s31 + 245000s21 + 2192s0s1 − 463925s1 − 3312s0 + 292860,

560s0s
2
1 − 1600s0s1 + 1225s1 + 1008s0 − 2412} (20)
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with s0, s1 and s2 as the variables. There are five solutions for this equation, namely p1, . . . p5.

The transfer function, after the simplification, reads,

T =
−1225s21 − 816s0s1 + 2940s1 + 816s0 − 10176

1728
(21)

Analytically compute

5∑
i=1

(
T 128

∣∣
pi

)
(22)

The result would be the partition function of a two-dimensional lattice model.

Problem II.4. Consider

f1 = x2 − y2 − z2 + 1, f2 = x− 3y + zx, f3 = x2 − xy + z2 − 1 (23)

Compute the (Grothendieck) multivarite residue of

x

f21 f2f3
(24)

at (x, y, z) = (0, 0, 1) for the small contour |f1| = |f2| = |f3| = ε.

Problem II.5. (IBP from Syzygies) This problem is about the IBP reduction for the two-loop

massless double box integrals with the syzygy approach [1]. Nowadays, it is much easier to do a

syzyg IBP reduction with the Baikov representation [2], but here we consider the original syzygy

method in the momentum space, since the picutre is clear.

The double box integral family has the form,

G[m1, . . . ,m9] =

∫
dDl1d

Dl2

(iπD/2)2
1

Dm1
1 . . . Dm9

9

(25)

where Di’s are defined in the lecture.

1. (IBP on the maximal cut). We consider the IBPs on the maximal cut, with the method in

the ref. [1]. Focus on the sector (1, 1, 1, 1, 1, 1, 1, 0, 0). An IBP has the form,

0 =

∫
dDl1d

Dl2

(iπD/2)2

(
∂

∂lµ1

vµ1
Dm1

1 . . . Dm9
9

+
∂

∂lµ2

vµ2
Dm1

1 . . . Dm9
9

)
. (26)

We use the following 9 quantities as free variables,

X =

{
(l1 · p1), (l1 · p2), (l1 · p4), (l2 · p1), (l2 · p2), (l2 · p4), l21, (l1 · l2), l22

}
.

(27)
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Write the inverse propagators D1, . . . , D9 as linear functions of these variables.

The vector v1 and v2 are parametrized as,

vµ1 = a1p
µ
1 + a2p

µ
2 + a3p

µ
4 + a4l

µ
1 + a5l

µ
2

vµ2 = a6p
µ
1 + a7p

µ
2 + a8p

µ
4 + a9l

µ
1 + a10l

µ
2 (28)

where a1, . . . , a10 should be polynomials in X .

Consider the syzygy relations,( 2∑
i=1

vµi
∂Dj

∂lµi

)
+ bjDj = 0, j = 1, . . . 7 (29)

There are 7 such equations. Here b1, . . . , b7 should also be polynomials in X . Explicitly write

the syzygy relations as,

A(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7)
T = 0 . (30)

where A is a 7× 17 matrix.

Apply Singular or the interface to Singular for Mathematica, to solve this syzygy problem.

The computation should be fast, i.e., in seconds. Call the solutions v(1), . . . , v(N). Do not

worry if N is large. Instead of trimming the syzygy generator set, we just naively use some

linear algebra tricks to get simple IBP sets.

First generate the IBPs with all N vectors with

m1 = . . . = m7 = 1, m8 = 0, m9 = 0 (31)

We call it the basic IBP for a vector. If a vector’s basic IBP has no integral in this sector

(1, 1, 1, 1, 1, 1, 1, 0, 0), drop it since this vector would provide sub-sector IBPs.

Define H = 6, the highest degree for ISPs. For every surviving vector’s basic IBP, denote

the D8, D9’s total degree as h, (h ≥ 0). Perform a seeding for this vector with all possible

values of m8 and m9,

m8 ≤ 0, m9 ≤ 0, −(H − h) ≤ m8 +m9 ≤ 0, (32)

and you will get several IBPs for this vector.

Collect all IBPs you have from the previous step. Then set all integrals which are not on the

sector (1, 1, 1, 1, 1, 1, 1, 0, 0) as zero. This is the maximal cut. You will get hundreds of IBPs

in 28 integrals. Convince yourself that these integrals therein have no double propagators.



8

Find a linearly independent set of IBPs with numerical linear algebra computations. Now you

have 26 independent IBPs in 28 integrals. Define an integral ordering and do a Gaussian

elimination on these IBPs. This can be easily done with RowReduce in Mathematica,

within seconds.

You result should be the reduction of all ISP degree ≤ 6 integrals of this sector to

G[1, 1, 1, 1, 1, 1, 1, 0, 0], G[1, 1, 1, 1, 1, 1, 1,−1, 0] (33)

on the maximal cut.

2. (257-cut). We want the full IBP instead of the maximal cut IBP. Frequently, we use some

spanning cuts to reconstruct the full IBPs to speed up the computations.

For the double box, one spanning cut is 257, that means any integral in a sector S with

a2 = 0, or a5 = 0, or a7 = 0 (34)

is set to zero. We need to consider 24 = 16 sectors for this cut:

{1, 1, 1, 1, 1, 1, 1, 0, 0}, {1, 1, 1, 1, 1, 0, 1, 0, 0}, {1, 1, 1, 0, 1, 1, 1, 0, 0}, {1, 1, 0, 1, 1, 1, 1, 0, 0}

{0, 1, 1, 1, 1, 1, 1, 0, 0}, {1, 1, 1, 0, 1, 0, 1, 0, 0}, {1, 1, 0, 1, 1, 0, 1, 0, 0}, {1, 1, 0, 0, 1, 1, 1, 0, 0},

{0, 1, 1, 1, 1, 0, 1, 0, 0}, {0, 1, 1, 0, 1, 1, 1, 0, 0}, {0, 1, 0, 1, 1, 1, 1, 0, 0}, {1, 1, 0, 0, 1, 0, 1, 0, 0},

{0, 1, 1, 0, 1, 0, 1, 0, 0}, {0, 1, 0, 1, 1, 0, 1, 0, 0}, {0, 1, 0, 0, 1, 1, 1, 0, 0}, {0, 1, 0, 0, 1, 0, 1, 0, 0}

(35)

For the IBP of the cut 257, we have the following instructions:

Compute the syzygies for the 16 sectors. For each sector, we impose the condition that there

is no double propagator. For example, for the sector {0, 1, 0, 0, 1, 1, 1, 0, 0},( 2∑
i=1

vµi
∂Dj

∂lµi

)
+ bjDj = 0, j = 2, 5, 6, 7 (36)

For every sector, perform a seeding for the ISPs. For the top sector {1, 1, 1, 1, 1, 1, 1, 0, 0},

we use H = 5. For other sectors, we use H = 4. (These values are determined by the trial

and error.) For example, for a vector associated with the sector {0, 1, 0, 0, 1, 1, 1, 0, 0}, we

use

m1 ≤ 0, m3 ≤ 0, m4 ≤ 0, m8 ≤ 0, m9 ≤ 0,

−(4− h) ≤ m1 +m3 +m4 +m8 +m9 ≤ 0. (37)
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where h (h ≥ 0) is the ISP degree of the basic IBP.

For each sector, collect the IBPs. Here we use the classic “tail mask” trick. Treat the

integrals on the sector as variables, and all other integrals as constants. Use linear algebra

to find an independent IBP set for each sector.

Each sector’s IBP system would be quite small, i.e., with fewer than 300 IBPs. Then use

Mathematica (not the command “RowReduce”!), Singular, Fermat or FiniteFlow to do a

Gaussian Elimination. Each Gaussian elimination should be fast, finished within a minute.

Combine the Gaussian elimination results of all 16 sectors, to reduce G[1, 1, 1, 1, 1, 1, 1, 0,−5]

as a linear combination of,

G[1, 1, 1, 1, 1, 1, 1,−1, 0], G[1, 1, 1, 1, 1, 1, 1, 0, 0], G[1, 1, 1, 0, 1, 0, 1, 0, 0], G[1, 1, 0, 1, 1, 0, 1, 0, 0],

G[0, 1, 1, 0, 1, 1, 1, 0, 0], G[0, 1, 0, 1, 1, 1, 1, 0, 0], G[0, 1, 0, 0, 1, 0, 1, 0, 0] (38)

This step is called the back-substitution. Note that you have to simplify the immediate ex-

pressions in combining the Gaussian elimination results, to speed up the computation. Here

we do not consider the symmetries.

If you do it properly, this step can be done within seconds in Mathematica.
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